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We propose an efficient and low-power second harmonic generation (SHG) process in a silicon-compatible hybrid
plasmonic microring resonator. By making the microring resonator doubly resonant at the fundamental wave-
length of 3.1 μm and second harmonic wavelength of 1.55 μm, the SHG efficiency is enhanced by almost two
orders of magnitude when compared to the previous result induced in a straight plasmonic waveguide.
A SHG efficiency of 13.71% is predicted for a low pump power of 20 mW in a ring with radius of 2.325 μm.
This device provides a potential route for realizing efficient frequency conversion between mid-infrared and
near-infrared wavebands on a chip. © 2014 Chinese Laser Press
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optics, integrated optics; (250.5403) Plasmonics.
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1. INTRODUCTION
Over the last few decades, silicon photonics has been exten-
sively studied to operate near the telecommunication band
in the near-infrared (NIR) wavelength region. Recently, mid-
infrared (MIR) silicon photonics has also attracted consider-
able attention due to the relatively low intrinsic loss of silicon
in this waveband range typically from 2 to 8 μm and to the
existence of various application areas [1–6], including sens-
ing, medical diagnostics, thermal imaging, and free-space
communications [7]. It is thus interesting and significant to
bridge these two wavelength bands through nonlinear wave-
length conversion, such as generation of MIR light with a
telecom-band pump source [8]. Another motivation for this
lies in the challenges related to the detection of MIR waves.
The size of detectors is usually bulky, or a cryogenic environ-
ment is often needed, which limits the development of the
integration level and hinders the low-power consumption
of MIR systems. A MIR-to-NIR conversion then allows cir-
cumventing these drawbacks by detecting the converted
waves using mature telecom-band photodetectors [9,10].

To date, MIR-to-NIR proposed converters in silicon photon-
ics have mostly exploited nonlinear four-wave mixing proc-
esses in silicon itself [10,11]. However, improvements in the
performance of nonlinear mechanisms by introducing plas-
monic structures or highly nonlinear materials such as organic
polymers (NPs) into the silicon photonics platform have also
been envisaged as a key option [12–19]. Plasmonic structures
indeed support strong local-enhanced confinement of light in
subwavelength scales and ultrafast responses [12,20], and NPs
usually have nonlinear susceptibilities exceeding those of

silicon or even have large second-order nonlinear susceptibil-
ities that vanish in silicon [18,19]. Microring resonators (MRRs)
have also been proposed to be attractive components in
silicon photonics to further reinforce optical nonlinearities
and realize efficient and compact nonlinear frequency conver-
sions because of the large field enhancements around resonant
wavelengths provided by MRRs [21–28]. The combination of
hybrid plasmonic waveguides (HPWs) and MRRs has been pro-
posed in several works in which the HPW-based MRRs support
subwavelength or even submicrometer radii and large field
enhancements in the low-index slot area [29–33]. However,
most of these works were focused on the linear response of
the MRR. In this work, we apply the HPW of Ref. [15] into a
MRR configuration. By setting both the fundamental frequency
(FF) and the second harmonic frequency (SHF) at two different
resonant wavelengths, an enhancement factor of second har-
monic generation (SHG) efficiency by almost two orders of
magnitude is predicted.

The remainder of this paper is organized as follows. In
Section 2, we describe the structure of the proposed HPW-
MRR device and the detailed design to take the phase match-
ing, resonance, and optical losses of the MRR into account.
In Section 3, results related to SHG in the proposed configu-
ration are presented. Finally, we conclude in Section 4.

2. STRUCTURE AND DESIGN
A. Structure
The proposed silicon-organic hybrid plasmonic microring res-
onator (SOHPMR) is shown in Fig. 1. The straight access
waveguide with width wa is coupled with the ring through
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a gap distance of g. The radius and width of the bended wave-
guide are R and w, respectively. The cross section of the HPW
is characterized by a NP with a thickness of hp � 70 nm, well
suited to find a phase-matching point in a bended waveguide,
as shown hereafter. The thicknesses of the Ag and Si layers
are hm � 100 nm and hSi � 480 nm, respectively. The poly-
mer is chosen as the doped, cross-linked NP with a refractive
index of n � 1.643 and a nonlinear susceptibility of χ�2�111 �
619 pm∕V at the wavelength of 1550 nm [19]. The pump light
at the FF of λ1 � 3.1 μm is coupled into the SOHPMR with
reasonable powers (values are given hereafter). The expected
SHF at λ2 � λ1∕2 � 1.55 μm is generated and outputs from the
through port of the SOHPMR.

Such a device can be fabricated by classical technological
processes. First, the polymer can be spin-coated onto the
silicon layer, and then by defining a mask on the wafer and
etching through, the MRR configuration can be defined.
Following this, metallic layers can be deposited on top
through a lift-off process.

B. Design for Phase Matching, Adjustment of the
Resonance, and Loss Minimization
Using the modal phase-matching method, the needed phase-
matching condition (PMC) to enhance the nonlinear SHG
process can be realized between the fundamental (zeroth)
mode at the FF and the second-order (first) mode at the
SHF in the straight HPW [15]. Based on the same mechanism,
the new phase-matching points in the bend-waveguide con-
figuration have been searched. The modal properties of
bended waveguides have been analyzed by 2D axisymmetric
simulation in COMSOL. Material dispersion for modeling
the refractive index of SiO2, Si, and Ag was taken from
Refs. [34,35], and [36], respectively. Figure 2 shows the differ-
ence of the effective refractive index between the interacting

two modes as a function of the radius R and width w of the
bended waveguide. Note that the fundamental mode of the
SHF was not considered in this study. The black line marks
out the zero value, i.e., the phase-matching line. One can
see that the PMC can be fulfilled in the bended HPW as well
and that for most of the radius values, two phase-matching
points can be found.

Next, the locations of the resonant wavelengths for the ring
have been adjusted in order to match with the two frequencies
of interest for the reinforcement of the SHG process. Stating
that a resonance into the ring happens when neffkFFR � m
(m is an integer and is known as the azimuthal number of
the resonance), where neff and kFF are the effective refractive
index and propagation constant, respectively, the “neffkFFR”
quantity has been plotted as a function of radius in Fig. 3(a).
For each radius value, the larger waveguide width on the
top phase-matching line has been chosen correspondingly.
Combining this condition with the minimization of the 90°-
bending HPW losses for the two frequencies of interest [shown
in Fig. 3(b)], them � 9 value was finally chosen. Optimal radii
near 2.6 and 2 μm were found for the FF and the SHF, respec-
tively, where aminimum loss level was obtained due to the joint
contributions from the radiation (increasing exponentially with
a radius decrease) and the intrinsic losses of the waveguide re-
sulting from the metal absorption [30]. As shown in the inset of
Fig. 3(a), the corresponding geometrical parameters form � 9
are R � 2.325 μm and w � 351 nm ≈ 350 nm, which are the
final geometrical parameters that were chosen.

The obtained phase-matched field distributions are shown
in Fig. 4, where Figs. 4(a) and 4(b) plot the Ez distributions of
the zeroth mode at the FF and the first mode at the SHF, re-
spectively. The effective refractive indices of the two modes
are nFF � 1.90963� 0.00362i and nSH � 1.90961� 0.00144i,
respectively. Figure 4(c) shows the normalized Ez profiles
on the center line of the slot along the r direction, as marked
in Fig. 4(a). We can see that the peak value of the field is not

Fig. 1. Schematic of the SOHPMR. Cross-sectional views along the
(a) X − Y and (b) X − Z planes.

Fig. 2. Δn � nSH − nFF as functions of the radius and width of the
bended waveguides. The black line represents the zero value, i.e.,
the phase-matching line.
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Fig. 3. (a) neffkFFR and (b) loss of a 90° bend at the phase-matching
line as functions of the radius. The inset in (a) is an enlarged view near
neffkFFR � 9.

Fig. 4. Ez distributions for the phase-matched modes at (a) FF and
(b) SHF when R � 2.325 μm and w � 351 nm. (c) is the normalized
Ez distribution on the center line of the slot along the r direction.
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located at the center of the waveguide because of the bended-
waveguide property.

The width of the access waveguide was then designed as
wa � 358.3 nm ≈ 360 nm in order to maximize the fraction
of FF field coupled into the ring. Then, nFF � 1.90968�
0.00271i and nSH � 1.91268� 0.00139i for the access wave-
guide. Finally, in order to set a comparison benchmark for
the SHG efficiency in the ring resonator configuration with
previous results, the efficiency of the SHG process in a
straight HPW was complementarily estimated (with w �
369.2 nm ≈ 370 nm in this case for PMC consideration).

3. THEORY AND RESULTS
A. Second Harmonic Generation Enhancement Factor in
the Ring Resonator
In this subsection, we derive the enhancement factor for the
SHG in a ring resonator when compared to a single waveguide.
First, the SHG efficiency in a single lossy waveguide with a
length of L is (the detailed derivation is given in Appendix A)

η1 �
P�out�
SH

P�in�
FF

� ω2
FF

16
c2SHL

2
eff�L� exp�−αSHL�PFF�0�; (1)

where P�in�
FF and P�out�

SH are the input power of the FF and the
generated output power of the SHF, respectively. ωFF is the
angular frequency of the FF, cSH is the nonlinear coupling
coefficient being the overlap integral between the interacting
modes in the nonlinear cross-sectional area, and Leff is the
effective length defined by

Leff�L� �
1 − exp�−�αFF − αSH∕2� iΔβ�L�

αFF − αSH∕2� iΔβ
: (2)

Δβ � βSH − 2βFF is the phase mismatch. βFF;SH and αFF;SH
represent the phase propagation constant and attenuation
coefficient, respectively.

For the SHG in a MRR, the conversion efficiency is
(Appendix B)

η2 �
P�out�
SH

P�in�
FF

� ω2
FF

16
c2SHL

2
eff�L�F4

FFF
2
SH exp�−αSHL�P�in�

FF : (3)

Here L is the circumference of the microring given by L � 2πR
with R being the radius of the ring measured from the center
of the ring to the center of the waveguide. FFF;SH are the field
enhancement factors, which can be written as

FFF;SH � κFF;SH
1 − tFF;SH exp��iβFF;SH − αFF;SH∕2�L�

: (4)

κ and t are the coupling and transmission coefficients related
to each other by jκj2 � jtj2 � 1.

Compared to the SHG efficiency in a single waveguide of
Eq. (1), the efficiency in a MRR is enhanced by a factor of
F4
FFF

2
SH. However, it should be noted that the linear losses

of the bended waveguide in the MRR here include the intrinsic
loss of the waveguide and the bend radiation loss, which
makes them larger than that for a straight waveguide. The real
enhancement factor would thus be smaller than F4

FFF
2
SH.

Specifically, at the considered phase-matching and resonating
point considered in this study, where βSH � 2βFF � 2m∕R

with m being an integer, the effective length and field en-
hancement factor are

Leff�L� �
1 − exp�−�αFF − αSH∕2�L�

αFF − αSH∕2
;

FFF;SH � κFF;SH

1 − tFF;SH exp
�
−

αFF;SH
2 L

� : (5)

In this circumstance, SHG shows the best performance.

B. Obtained Enhanced Second Harmonic Generation
Conversion Efficiencies
In the first benchmarking single straight HPW considered con-
figuration, the nonlinear coupled coefficient was calculated to
be cSH � 134 psm−1 W−1∕2. Then by using Eq. (1), the SHG ef-
ficiency was estimated as η1 � 0.14% for an input pump power
P�in�
FF � 20 mW and a waveguide length of 14.6 μm correspond-

ing to the unfolded circumference of the MRR considered in a
second step. Similarly, by using Eq. (3), the SHG efficiency
was newly obtained in the MRR configuration under the same
pumping power condition. The nonlinear coupled coefficient
was then cSH � 130 psm−1 W−1∕2 for the bended-waveguide
case. Figure 5 shows the final MRR-enhanced SHG efficiency
η2 as a function of the two waveguide-to-ring transmission co-
efficients for the FF (tFF) and the SHF (tSH), respectively (see
Appendix B for the exact definitions of tFF and tSH, which are
in practice controlled by the geometrical sizes of the access
and bended waveguides, and the gap g between them). As is
visible, a peak efficiency up to η2 � 21% is realized when
the MRR works at the critical coupling point for both the
FF and the SHF, i.e., when tFF � exp�−παFFR� � 0.898 and
tSH � exp�−παSHR� � 0.918. A maximum enhancement factor
of η2∕η1 � 150 is then expected. However, it is worth noting
that it is not possible to let the FF and the SHF work at the
critical coupling points at the same time in practice. Usually,
tSH is larger than tFF for the same MRR because the waveguide
mode at the SHF extends less beyond the waveguide boun-
dary due to a smaller wavelength. In spite of this, an optimal
point can be envisaged in practice by adjusting the geometri-
cal parameters of the MRR.

All the other geometrical parameters being fixed, the cou-
pling and transmission coefficients of the MRR are only con-
trolled by the thickness of the gap g between the access
waveguide and the ring. Figure 6(a) shows the transmission
coefficients for the two wavelengths of interest as a function

Fig. 5. SHG efficiency η2 as a function of the transmission coeffi-
cients for FF tFF and SHF tSH.
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of the gap parameter g. Here the coupling coefficients are cal-
culated by making use of the coupled mode theory for MRRs
[37,38]. Figure 6(b) shows the corresponding SHG conversion
efficiency for different gap thicknesses. As can be seen, there
is an optimal gap of g � 175 nm, where the SHG efficiency is
η2 � 13.71%. Correspondingly, tFF � 0.8088 and tSH � 0.9666,
respectively. Figure 6(c) shows the SHG enhancement factor
described by F4

FFF
2
SH and the realistic enhancement η2∕η1 ra-

tio as functions of g. For the optimal gap of 175 nm, a maxi-
mum enhancement up to η2∕η1 ∼ 100 is thus possible in
practice by changing the straight HPW configuration into
the MRR one. Another interesting point lies in the critical
point for the FF, where no FF light would couple out from
the through port. It happens when g � 251 nm ≈ 250 nm. At
this point, tFF � 0.898 and tSH � 0.988. The SHG efficiency
is then η2 � 9.2%, which means a MRR-enhancement factor
of still 66.

In order to further confirm the veracity of the proposed
scheme, we calculated the transmission spectra of the MRR
around the SHF and the FF in a 3D structure and plot them
in Fig. 7. FDTD Lumerical software was used to carry out the
3D full-wave simulation. Two resonant wavelengths of 1548.4

and 3099 nm are presented. The slight difference over the
previous mode analysis is probably due to the applied different
mesh sizes and different calculation methods in the finite-
element-based mode analysis and 3D full-wave FDTD simula-
tion. The MRR shows small extinction ratios because it works
deviating from the critical points especially at the SHF.
Figures 7(b) and 7(d) show the Ez distributions at the SHF
and the FF, respectively. As can be seen, the MRR resonates
at both the FF and the SHF and the azimuthal numbers at
two wavelengths are 9 and 18, respectively. This agrees well
with the previous mode analysis.

In the meantime, we finally estimated the robustness of the
present results with respect to the additional optical losses
due to the side-wall roughness coming from lithographic
and etching steps used to define the investigated structure.
In this purpose, we considered the last optimized configura-
tion with loss coefficients of the bended HPW at the FF and
the SHF given by αFF � 638 dB∕cm and αSH � 509 dB∕cm,
respectively, and anticipated from this initial condition an in-
crease of αFF and αSH. The result is plotted in Fig. 8, in which
the left bottom corner corresponds to the bottom loss level
coming from the absorption of the metallic layer and radiation
losses only. As shown here, the SHG efficiency only slightly
drops from 13% to 10% even for extremely large extrinsic
losses eventually coming from the fabrication process. This
point and the quantitative results provided by the 3D per-
formed FDTD simulations (Fig. 7) assess the strong potential
of the proposed approach for SHG enhancement in the ultra-
small footprint silicon plasmonic ring resonator structures.

4. CONCLUSION
To conclude, a silicon-organic HPW geometry based on a
microring configuration is proposed to enhance the SHG
process on the silicon photonics platform. By taking the
phase matching, resonance, and loss level into considera-
tion, the conversion properties are shown to be improved
in three aspects: the needed pump power becomes lower,
the size of the device is smaller, and the efficiency of the
SHG is larger. In the proposed final geometry, a SHG conver-
sion efficiency of around 13.7% is predicted for a pump
power as low as 20 mW and a ring radius of 2.325 μm. This
obtained dramatic improvement of the nonlinear efficiency
with respect to previous results opens avenues to practical
applications using low-power nonlinear SHG-based all-
optical on-chip signal processing.

Fig. 6. (a) Transmission coefficients for two wavelengths, (b) final
SHG conversion efficiency, and (c) enhancement factor in the ring as
a function of the gap.

Fig. 7. Transmission spectra of the 3D MRR structure around
(a) SHF of 1.55 μm and (c) FF of 3.1 μm when R � 2.325 μm,
wa � 358.3 nm, w � 351 nm, and g � 175 nm. The two resonant
wavelengths are 1548.4 and 3099 nm. (b) and (d) are the Ez distribu-
tions at the SHF and the FF, respectively.

Fig. 8. SHG efficiency η2 as a function of the attenuation coefficients
for FF (αFF) and SHF (αSH).
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APPENDIX A: THEORY OF SECOND
HARMONIC GENERATION IN A SINGLE
WAVEGUIDE
In a single lossy waveguide propagating along the�z direction,
the nonlinear coupled equations (NCEs) for the SHG are [14]

∂AFF

∂z
� −

αFF
2

AFF � i
ωFF

4
cFFA�

FFASH exp�iΔβz�;
∂ASH

∂z
� −

αSH
2

ASH � i
ωFF

4
cSHAFFAFF exp�−iΔβz�; (A.1)

where ωFF is the angular frequency of the FF. AFF;SH are the
slowly varied complex mode amplitudes. Δβ � βSH − 2βFF is
the phase mismatch. βFF;SH and αFF;SH represent the phase
propagation constant and attenuation coefficient, respectively.
And cFF;SH are the nonlinear coupling coefficients, which are
defined by

cFF � ε0

ZZ n
χ�2�∶E⃗SH�x; y�E⃗�

FF�x; y� · E⃗0
FF�x; y�

o
dxdy;

cSH � ε0

ZZ n
χ�2�∶E⃗FF�x; y�E⃗FF�x; y� · E⃗0

SH�x; y�
o
dxdy; (A.2)

with E⃗FF;SH�x; y� and E⃗0
FF;SH�x; y� being the mode profiles,

which have been normalized. E⃗0
FF;SH�x; y� are the modes propa-

gating along the −z direction. Under the approximation in
which the pump is not depleted by the nonlinear conversion
process, one can solve Eq. (A.1) analytically to obtain [39]

AFF � AFF�0� exp
�
−

αFF
2

z
�
;

ASH � i
ωFF

4
cSHLeff�z�A2

FF�0� exp
�
−

αSH
2

z
�
;

� ASH�0� exp
�
−

αSH
2

z
�
; (A.3)

where the effective length is

Leff�z� �
1 − exp�−�αFF − αSH∕2� iΔβ�z�

αFF − αSH∕2� iΔβ
: (A.4)

So the SHG efficiency in a lossy waveguide with length of L is

η1 �
jASH�L�j2
jAFF�0�j2

� ω2
FF

16
c2SHL

2
eff�L� exp�−αSHL�PFF�0�: (A.5)

Note that this single waveguide can be a straight or a bended
waveguide.

APPENDIX B: THEORY OF SECOND
HARMONIC GENERATION IN A
MICRORING RESONATOR
Next, we deduce the theory of SHG in a MRR, starting from
the schematic of Fig. 9. The interactive waves satisfy the fol-
lowing equations:

A�2�
FF;SH � tFF;SHA

�1�
FF;SH � iκFF;SHA

�4�
FF;SH;

A�3�
FF;SH � iκFF;SHA

�1�
FF;SH � tFF;SHA

�4�
FF;SH: (B.1)

The complex mode amplitudes A are normalized, so that their
squared magnitude corresponds to the modal power. κ and t

are coupling and transmission coefficients with jκj2 � jtj2 � 1.
Besides, based on Eq. (A.3), we can obtain

A�4�
FF � A�3�

FF exp
h�

iβFF −
αFF
2

�
L
i
;

A�4�
SH � i

ωFF

4
cSHLeff�L�

�
A�3�
FF

�2 exp
h�

iβSH −

αSH
2

�
L
i

� A�3�
SH exp

h�
iβSH −

αSH
2

�
L
i
; (B.2)

where L is the circumference of the microring given by
L � 2πR with R being the radius of the ring. Leff�L� is the
effective length defined in Eq. (A.4). The incident condition
of the SHG is

A�1�
FF � A�in�

FF ; A�1�
SH � 0: (B.3)

Based on Eqs. (B.1)–(B.3), we can obtain

A�2�
FF �

n
tFF − κFFFFF exp

h�
iβFF −

αFF
2

�
L
io
A�in�
FF ;

A�3�
FF � iFFFA

�in�
FF ;

A�4�
FF � iFFF exp

h�
iβFF −

αFF
2

�
L
i
A�in�
FF ;

A�2�
SH �ωFF

4
cSHLeff�L�F2

FFFSH exp
h�

iβSH −

αSH
2

�
L
i�
A�in�
FF

�2;
A�3�
SH � −i

ωFF

4
tSH
κSH

cSHLeff�L�F2
FFFSH exp

h�
iβSH −

αSH
2

�
L
i�
A�in�
FF

�2;
A�4�
SH � −i

ωFF

4κSH
cSHLeff�L�F2

FFFSH exp
h�

iβSH −

αSH
2

�
L
i�
A�in�
FF

�2;
(B.4)

where the FFF;SH are the field enhancement factors, which can
be written as

FFF;SH � κFF;SH
1 − tFF;SH exp��iβFF;SH − αFF;SH∕2�L�

: (B.5)

The SHG conversion efficiency is

η2 �
jA�2�

SHj2
jA�in�

FF j2
� ω2

FF

16
c2SHL

2
eff�L�F4

FFF
2
SH exp�−αSHL�P�in�

FF : (B.6)

In the analytic solution of Eqs. (A.3) and (B.2) for the NCE of
Eq. (A.1), we have made an approximation that the pump is
not depleted by the nonlinear conversion. Nowwe confirm the
accuracy of this approximation by comparing the analytic sol-
ution with the numerical solution obtained by calculating the

Fig. 9. Schematic of SHG in a single-pass MRR.
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NCE directly. Figure 10(a) shows the SHG efficiency as a func-
tion of the propagation length in the straight HPW when the
input pump power of the FF is P�in�

FF � 20 mW. The dashed line
and solid line represent the analytic solution and numerical
solution, respectively. When the MRR works at the critical
coupling point for the FF, i.e., tFF � exp�−παFFR�, the field en-
hancement factor in Eq. (B.5) is calculated to be FFF � 2.276.
The power of the FF in the MRR is F2

FFP
�in�
FF � 103.6 mW. Tak-

ing this power as the input power of the FF, Fig. 10(b) shows
the comparison for the bend waveguide with radius of
R � 2.325 μm. One can see that, for both the straight and bend
waveguides we study in this work, the analytic solution for the
NCE is accurate when the length of the waveguide is smaller
than 40 μm. For the final structure we choose, the circumfer-
ence of the ring is L � 2πR � 14.6 μm. Based on the above
analysis, it is reasonable to apply the analytic solution in
Eqs. (A.3) and (B.2). Lastly, it should be noted that this ana-
lytic solution is only applicable under the condition of low
pump power and short waveguide length. Otherwise direct
calculation of the NCE is required. This matter of fact explains
why the conversion efficiency at large pumping powers (e.g.,
200 mW, 2 W) cannot be considered by starting from 13.71%
and multiplying this result by the amount of pumping power
increase with respect to PFF � 20 mW.
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